Practice Worksheet: Graphing Quadratic Functions in Standard Form

- 1] For any quadratic of the form $y = \alpha x^2 + c$, the axis of symmetry is always the line ______.
- 2] If the axis of symmetry of a quadratic is x = 2 and (-1, 3) is on the graph, then the point $(\underline{\hspace{1cm}}, \underline{\hspace{1cm}})$ must also be on the graph.
- 3] For any quadratic of the form $y = ax^2 + c$, the y-intercept is always the same point as the _____.
- 4] The graph of $y = 2x^2 + 4x + 3$ passes through the point $(1, \underline{\hspace{1cm}})$ and $(-1, \underline{\hspace{1cm}})$.

For #5-12, label the axis of symmetry, vertex, y-intercept, and at least three more points on the graph.

c =

Is vertex a max or min? y-intercept:

Axis of Symmetry is x=

Vertex: (____, ___)

6] $y = 2x^2 + 8x$ a = b =

Opens up or down?

Is vertex a max or min? y-intercept:

Axis of Symmetry is x=

Vertex: (_____, ____)

7] $y = -3x^2 - 12x + 1$ a = b = c =

Opens up or down?

Is vertex a max or min? y-intercept:

Axis of Symmetry is x=_____

Vertex: (_____, ____)

8] $y = -\frac{3}{2}x^2 + 3$ a = b = c = 0Opens up or down? Is vertex a max or min? y-intercept: $(0, ___)$ Axis of Symmetry is $x = ___$

Vertex: (_____, ____)

Find the coordinates (2, _____) and (-2, _____) to guide the shape of the parabola.

9] $y = 2x^2 - 1$

a = b = c =Opens up or down?

Is vertex a max or min? y-intercept: (0, ____)

Axis of Symmetry is x=____

Vertex: (_____, ____)

Find the coordinates (2, _____) and (-2, _____) to guide the shape of the parabola.

10] y	$= x^2 + 4x$	+ 3
a =	b =	c =

y-intercept: (0, ____)

Axis of Symmetry is x=_

Vertex: (,)

Find the coordinates of the points:

$$(-1, \underline{\hspace{1cm}}), (-3, \underline{\hspace{1cm}}), \text{ and } (-4, \underline{\hspace{1cm}}).$$
 $(-6, \underline{\hspace{1cm}}), (-4, \underline{\hspace{1cm}}), \text{ and } (-2, \underline{\hspace{1cm}}).$ $(-4, \underline{\hspace{1cm}}), (-3, \underline{\hspace{1cm}}), (-3, \underline{\hspace{1cm}}), \text{ and } (-1, \underline{\hspace{1cm}}).$

y-intercept: (0, ____)

Axis of Symmetry is x =

Vertex: (____, ___)

Find the coordinates of the points:

$$(-6, ___), (-4, ___), and (-2, ___)$$

y-intercept: (0, ____)

Axis of Symmetry is $x = \underline{\hspace{1cm}}$

Vertex: (,)

Find the coordinates of the points:

13] A baker has modeled the monthly operating costs for making wedding cakes by the function $y = \frac{1}{2}x^2 - 12x + 150$ where y is the total cost in dollars and x is the number of cakes prepared. How many cakes should be prepared to yield the minimum operating cost?

14] The path that a motocross dirt bike rider follows during a jump is given by $y = -0.4x^2 + 4x + 10$ where x is the horizontal distance (in feet) from the edge of the ramp and y is the height (in feet). What is the maximum height of the rider during the jump?